Indira Gandhi National Tribal University, Amarkantak

Prof. Ram Dayal Munda Central Library

Online Public Access Catalogue

Amazon cover image
Image from Amazon.com
Image from OpenLibrary

Cognitive Supervision for Robot-Assisted Minimally Invasive Laser Surgery [electronic resource] / by Loris Fichera.

By: Contributor(s): Material type: TextTextSeries: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Cham : Springer International Publishing : Imprint: Springer, 2016Description: XIX, 99 p. 62 illus., 38 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319303307
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 610.28 23
LOC classification:
  • R856-857
Online resources:
Contents:
Introduction -- Background: Laser Technology and Applications to Clinical Surgery -- Cognitive Supervision for Transoral Laser Microsurgery -- Learning the Temperature Dynamics During Thermal Laser Ablation -- Modeling the Laser Ablation Process -- Realization of a Cognitive Supervisory System for Laser Microsurgery -- Conclusions and Future Research Directions.
In: Springer eBooksSummary: This thesis lays the groundwork for the automatic supervision of the laser incision process, which aims to complement surgeons’ perception of the state of tissues and enhance their control over laser incisions. The research problem is formulated as the estimation of variables that are representative of the state of tissues during laser cutting. Prior research in this area leveraged numerical computation methods that bear a high computational cost and are not straightforward to use in a surgical setting. This book proposes a novel solution to this problem, using models inspired by the ability of experienced surgeons to perform precise and clean laser cutting. It shows that these new models, which were extracted from experimental data using statistical learning techniques, are straightforward to use in a surgical setup, allowing greater precision in laser-based surgical procedures.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Background: Laser Technology and Applications to Clinical Surgery -- Cognitive Supervision for Transoral Laser Microsurgery -- Learning the Temperature Dynamics During Thermal Laser Ablation -- Modeling the Laser Ablation Process -- Realization of a Cognitive Supervisory System for Laser Microsurgery -- Conclusions and Future Research Directions.

Open Access

This thesis lays the groundwork for the automatic supervision of the laser incision process, which aims to complement surgeons’ perception of the state of tissues and enhance their control over laser incisions. The research problem is formulated as the estimation of variables that are representative of the state of tissues during laser cutting. Prior research in this area leveraged numerical computation methods that bear a high computational cost and are not straightforward to use in a surgical setting. This book proposes a novel solution to this problem, using models inspired by the ability of experienced surgeons to perform precise and clean laser cutting. It shows that these new models, which were extracted from experimental data using statistical learning techniques, are straightforward to use in a surgical setup, allowing greater precision in laser-based surgical procedures.

There are no comments on this title.

to post a comment.