000 06065cam a2200673Ii 4500
001 on1027476522
003 OCoLC
005 20201009115355.0
006 m o d
007 cr cnu|||unuuu
008 180306s2018 xx o 000 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dEBLCP
_dYDX
_dNLE
_dDG1
_dOCLCF
_dOCLCQ
_dMERER
_dUAB
_dUPM
_dRECBK
_dOCLCQ
_dDEBBG
_dWYU
019 _a1028038091
_a1028081129
_a1028213786
_a1028524804
_a1028547503
_a1028589518
_a1028655149
_a1028846816
020 _a9783527809127
_q(electronic bk.)
020 _a3527809120
_q(electronic bk.)
020 _a9783527809097
_q(electronic bk. ;
_qoBook)
020 _a3527809090
_q(electronic bk. ;
_qoBook)
020 _a9783527809103
020 _a3527809104
020 _z9783527343133
020 _z352734313X
020 _a352734313X
020 _a9783527343133
024 3 _a9783527343133
029 1 _aCHVBK
_b516428691
029 1 _aCHNEW
_b001003174
035 _a(OCoLC)1027476522
_z(OCoLC)1028038091
_z(OCoLC)1028081129
_z(OCoLC)1028213786
_z(OCoLC)1028524804
_z(OCoLC)1028547503
_z(OCoLC)1028589518
_z(OCoLC)1028655149
_z(OCoLC)1028846816
037 _b00028608
050 4 _aQD882
072 7 _aSCI
_x013040
_2bisacsh
082 0 4 _a547.05
_223
049 _aMAIN
245 0 0 _aMetal-Organic Frameworks :
_bApplications in Separations and Catalysis /
_cedited by Hermenegildo Garcia and Sergio Navalon.
264 1 _a[Place of publication not identified] :
_bWiley-VCH,
_c2018.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
588 0 _aVendor-supplied metadata.
505 0 _aCover; Title Page; Copyright; Contents; Preface; Chapter 1 The Stability of Metalâ#x80;#x93;Organic Frameworks; 1.1 Introduction; 1.2 Chemical Stability; 1.2.1 Strengthening the Coordination Bond; 1.2.2 Protecting the Coordination Bond; 1.3 Thermal Stability; 1.4 Mechanical Stability; 1.5 Concluding Remarks; Acknowledgments; References; Chapter 2 Tuning the Properties of Metalâ#x80;#x93;Organic Frameworks by Post-synthetic Modification; 2.1 Introduction; 2.2 Post-synthetic Modification Reactions; 2.2.1 Covalent Post-synthetic Modification; 2.2.2 Inorganic Post-synthetic Modification.
505 8 _a2.2.3 Extent of the Reaction2.3 PSM for Enhanced Gas Adsorption and Separation; 2.3.1 PSM for Carbon Dioxide Capture and Separation; 2.3.2 PSM for Hydrogen Storage; 2.4 PSM for Catalysis; 2.4.1 Catalysis with MOFs Possessing Metal Active Sites; 2.4.2 Catalysis with MOFs containing Reactive Organic Functional Groups; 2.4.3 Catalysis with MOFs as Host Matrices; 2.5 PSM for Sequestration and Solution Phase Separations; 2.5.1 Metal Ion Sequestration; 2.5.2 Anion Sequestration; 2.5.3 Removal of Organic Molecules from Solution; 2.6 PSM for Biomedical Applications.
505 8 _a2.6.1 Therapeutic MOFs and Biosensors2.6.2 PSM by Change of Physical Properties; 2.7 Post-synthetic Cross-Linking of Ligands in MOF Materials; 2.7.1 Pre-synthetically Cross-Linked Ligands; 2.7.2 Post-synthetic Cross-Linking of MOF Linkers; 2.7.3 Post-synthetically Modifying the Nature of Cross-Linked MOFs; 2.8 Conclusions; References; Chapter 3 Synthesis of MOFs at the Industrial Scale; 3.1 Introduction; 3.2 MOF Patents from Academia versus the Industrial Approach; 3.3 Industrial Approach to MOF Scale-up; 3.4 Examples of Scaled-up MOFs; 3.5 Industrial Synthetic Routes toward MOFs.
505 8 _a3.5.1 Electrochemical Synthesis3.5.2 Continuous Flow; 3.5.3 Mechanochemistry and Extrusion; 3.6 Concluding Remarks; Acknowledgments; List of Abbreviations; References; Chapter 4 From Layered MOFs to Structuring at the Meso-/Macroscopic Scale; 4.1 Introduction; 4.2 Designing Bidimensional Networks; 4.3 Methodological Notes Regarding Characterization of 2D Materials; 4.3.1 Morphological and Structural Characterization; 4.3.2 Spectroscopic and Diffractometric Characterization; 4.4 Preparation and Characterization; 4.4.1 Bottom-Up Approaches; 4.4.2 Miscellaneous; 4.4.3 Top-Down Approaches.
505 8 _a4.5 Properties and Potential Applications4.5.1 Gas Separation; 4.5.2 Electronic Devices; 4.5.3 Catalysis; 4.6 Conclusions and Perspectives; Acknowledgments; References; Chapter 5 Application of Metalâ#x80;#x93;Organic Frameworks (MOFs) for CO2 Separation; 5.1 Introduction; 5.2 Factors Influencing the Applicability of MOFs for CO2 Capture; 5.2.1 Open Metal Sites; 5.2.2 Amine Grafting on MOFs; 5.2.3 Effects of Organic Ligand; 5.3 Current Trends in CO2 Separation Using MOFs; 5.3.1 Ionic Liquids/MOF Composites; 5.3.2 MOF Composites for CO2 Separation; 5.3.3 Water Stability of MOFs.
520 _aFocusing on applications in separation, adsorption and catalysis, this handbook underlines the importance of this hot and exciting topic. It provides an excellent insight into the synthesis and modification of MOFs, their synthesis on an industrial scale, their use as CO2 and chemical warfare adsorbers, and the role of defects in catalysis. In addition, the authors treat such new aspects as biocatalysis and applications in photocatalysis and optoelectronic devices.
650 0 _aSupramolecular organometallic chemistry.
650 0 _aOrganometallic polymers.
650 0 _aHeterogeneous catalysis.
650 7 _aSCIENCE
_xChemistry
_xOrganic.
_2bisacsh
650 7 _aHeterogeneous catalysis.
_2fast
_0(OCoLC)fst00955748
650 7 _aOrganometallic polymers.
_2fast
_0(OCoLC)fst01047984
650 7 _aSupramolecular organometallic chemistry.
_2fast
_0(OCoLC)fst01139161
655 4 _aElectronic books.
700 1 _aGarcía, Hermenegildo,
_eeditor.
700 1 _aNavalon, Sergio,
_eeditor.
776 0 8 _iPrint version:
_tMetal-Organic Frameworks.
_d[Place of publication not identified] : Wiley-VCH, 2018
_z352734313X
_z9783527343133
_w(OCoLC)1004266577
856 4 0 _uhttps://doi.org/10.1002/9783527809097
_zWiley Online Library
994 _a92
_bDG1
999 _c79257
_d79257